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The molecular orbital treatment given by Dunitz
& Orgel (1953) for the complex anion Ru2OCl;g' would
seem directly applicable to the Re2OClp' ion since
the two have the same molecular geometry. The result
of this group-theoretical treatment for Re;OCl' would
be a sigma representation involving five chlorine and
one oxygen bonds to metal and a representation
providing E, (bonding and antibonding), B, Bau,
and E, orbitals, these latter three types being ap-
proximately degenerate. Ten electrons, three from
each rhenium and the four p(z, y) from oxygen, can
be placed in these orbitals, but the relatively high
energy antibonding E, orbital is not needed. The
bonding E, orbital is described by Dunitz & Orgel
(1953) as a degenerate bonding pi orbital. With four
electrons in the E, bonding orbital, six remain to be
placed in the approximately degenerate group men-
tioned above. If Hund’s Rule is followed, one expects
to find two of these six electrons unpaired and to find
a paramagnetism of one unpaired electron per rhenium.
The experimental magnetic susceptibility (Jezowska-
Trzebiatowska & Wajda, 1954) is extremely small
and temperature independent and may, according to
Jezowska-Trzebiatowska & Wajda, even be due to
contamination with related paramagnetic rhenium
oxychloro complex compounds. This fact suggests
that Hund’s Rule is violated and that all the electrons
are paired.
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Effect of Errors of Atomic Co-ordinates on Structure Amplitude
and Bijvoet Inequality
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The effect of errors of atomic parameters on the calculated values of the structure amplitude and
the Bijvoet inequality is considered. Expressions for the standard deviations of the structure
amplitude, Bijvoet inequality and the phase angle are derived and discussed. It is also shown that
the fractional error in the structure amplitude can have as large a value as 509, or more for weak
reflections at high values of sin 6 even for a reasonably accurate structure.

1. Introduction

While the problem of finding out how the errors in
intensity |F|2 or structure amplitude |F| affect the
atomic positions has been discussed by a number of
authors (see for instance Lipson & Cochran, 1957),
not much attention seems to have been paid to the

converse problem namely how any errors in the atomic
co-ordinates affect the calculated values of |F|. This
problem was met with in connection with the author’s
work on the evaluation of the anomalous dispersion
factor Af” from experimental measurements of the
Bijvoet inequality (A4I/I) for various reflections hkl
(Parthasarathy, 1961). Consequently this general
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problem was considered and the results obtained are
presented below. The case of a non-centric symmetric
crystal (symmetry Pl) is first considered and the
discussion is then extended to a centro-symmetric
crystal (symmetry PI). Luzzati (1952) has also con-
sidered the effect of errors of atomic co-ordinates on
quantities as the structure amplitude |[F| or the
residual R, by employing a more elaborate method,
using the probability methods and Wilson’s intensity
statistics. However, he has not given any explicit
relation connecting the standard deviations in |F| and
the atomic coordinates which would be convenient
for numerical work. Using the present method which
is basically very simple and direct, though somewhat
less rigorous, a simple and explicit relation between
the standard deviations of structure amplitude and
atomic co-ordinates is derived.

2. Effect of errors on structure amplitude
|F| for P1

Let us first take the case of a crystal containing
N atoms per unit cell. Since we need consider but one
unit cell and not the entire lattice, we may as well
employ an orthogonal set of axes without loss of
generality.* Suppose that the position of the jth atom
(j=1 to N) in the unit cell is given by r; (z;, y;, 25)
where zj, y; and z; have standard deviations o(x;),
o(y;) and o(z;) respectively. We shall suppose that
the errors in the co-ordinates are isotropic i.e., the
position of the jth atom is distributed spherically
around its mean position with a root mean square
radius o(|rj|) (=o0r; say in A) with the centre of the
sphere at the tip of the vector r;. or; is then related to
the standard deviations o(x;), o(y;) and o(z;) by the
relations:

o(x;) = o(y;) = o(z;) = ors/ '3 . (1)

The problem is then to find out the standard deviation
of |F| in terms of o; for a particular reflection. We have

F=_2f;exp2niH.r;
! =2 fi exp 2mi(ha;ia+ky;[b+lz5ic) , (2)
7

where H is the reciprocal lattice vector. (For con-
venience indices hkl are omitted and the structure
factor of a general reflection Frr; will be simply
denoted by F). For arbitrary displacements 8r; of r;
the change 6|F| of |F} is given by

ny
O|F| = X grad;|F|.8r; , 3)t
j=1

where N is the number of independent r; i.e., in this

* Thanks are due to the referee for some remarks concerning
this point.

1 In writing equation (3), we take only the first term of the
Taylor expansion and this is equivalent to the assumption
that the function D given by equation (9) of Luzzati takes the
value unity.

case, the number of atoms in the unit cell. In order
to evaluate grad;|¥|, we note that grad;|F|2 =
2|F| grad;|F| and since |F|2=A42%2+ B2 we have

grad; [F|=(1/|F)) (4 grad; A+ B grad; B)  (4)

and eq{lation (3) becomes

Ry

O|F| =(1/IF|) X |(4 grad; 4 + Bgrad; B).8r;. (5)
j=1

Since ’

A =2:fj cos ¢ and B =2f] sin T s
- j

where !
q,‘j=f.).5't (h.l'j_"a+kyj'/b+l2j/c) (6)
we obtain
grad; 4 = —2z7f; sin ¢; H.8r; (7)
and
grad; B= 2=f; cos ¢; H.8r; . (8)

Substitution of equations (7) and (8) in equation (4)
leads to the expression for 6 F| as

X
O|F| =(2n/|F|) 2 fj(B cos @;— A sin ¢;)H.8r; . (9)
j=1

On squaring this and averaging over the differentials,
we have

r¥ X
{(S8|F))2) = (4m2/|F2) szifj(B cos @; — 4 sin ¢;)

X (B cos (pj—;4 sin ;)
x {(H.8r;) (H.8r))) . (10)

Here |F|2, H and (B cos ¢;— 4 sin ;) are constants
for a particular reflection and the averaging need be
done only over the displacements 8r; of the various
atoms. The averanging may be performed in two steps,
first over all orientations of 8r; and next over all
magnitudes of these. Now

H.8r;=|H| |0r;| cos &
H.8r;=|H]| |0ry] cos g5 ,

where ¢;, ¢; are the angles made by 8r; and 8r; with
the reciprocal lattice vector H. Hence

((H.8ry) (H.81;)) = H?2|| 67| |r;]] {cos &; cos &5} . (1la)

Here the bar indicates the average over all the values
of d|rj| and the curly bracket indicates the average
over the surface of a unit sphere (i.e., over the angle
variables). Since the displacements &r; and 8r; are
independent, the product cos &; cos s; would have a
mean value zero where i%j and a mean value }
when 7=3. We have then

<(H.8ri)(H.5rj)>={ 0 for iy

115
$Hz2}; for i=j (116)

where we have denoted |d7j(2 by o7;.
Using equation (115) in equation (10), we have

XN
C(BIF))= (4 H2 3 FI2) X (B cos g4 sin g3)¥7at
- (12)
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As in general the standard deviation of the position
of the atom is inversely proportional to the ‘heaviness’
of the atom, fo% can be taken to be reasonably a
constant for all j’s equal to (f}07;)av. say, and hence
this factor can be taken out of the summation. We
shall indicate its square root for convenience by (for)

so that {ff0?av.=(for)2. Thus

((OIF )2y =(4n*H?[3| FI?) (fa,)zé(B cos @;— A sing;)?.
= (13)

Equation (13) represents the mean square deviation
corresponding to a given o,. However, it contains the
expression (B cos p;— A sin g;) which has to be cal-
culated for each reflection, knowing 4, B and gj.
In this investigation, we are interested more in the
order of magnitude of errors rather than its actual
value. Consequently, we make an approximation and
use the average value of the above summation in the
expression for the variance of |F|. If we take that the
N atom in the unit cell are distributed at random,
then it follows that

2 (B cos g;— A sin g;)* ~ N(B cos ¢;— A sin gj)a..,

7

which is equal to
: (N/2) (A2 +B?) ,
since

{082 @;Vav. = (sIn? @;Yav.=} and {cos @; sin @sav.=0.

Thus, the average value of the sum is just (NV/2)|F|2

Denoting the mean value of {(J|F|)2) by o2(|F|), the

expression for this assumes the simple form (since
H2=1/d?)

a®(|F|) = (22N [3d2) (for)2. (14)

It follows from this that the fractional error in |F| is

o(|F|)/|F|=(272N/3)} (for)/(IF|d) .

(An alternative derivation of equation (14) which
is not so rigorous, but which uses direct physical
arguments is given in Appendix I.)

Equation (15) shows that in general, the fractional
error g(|F|)/|F| increases with increasing Bragg angle
i.e., for planes having larger and larger indices hkl
and hence the value of |F| is very sensitive to atomic
parameters at high angles. This indicates the impor-
tance of high angle reflections for refinement. It can
be also seen that, for reflections of medium intensity,
i.e., with

(15)

P2 ~ (| F)?) ~ 7Zf? ~ N(f%)

the fractional error is independent of the actual
number N; for putting |F|2 ~ Nf2. Equation (15)
becomes
S(FN|F| ~ 2n2(3)} (N/d) ({f2a)H(N{f2))}
~ (272[3)} ov/d

where ¢, can be considered to be the mean of the
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standard deviations of the various atoms. On the
other hand o(|F|)/|F| assumes very large values for
weak reflections especially at high angles. Taking a
typical case of a weak reflection with its structure
amplitude having one fifth the mean value i.e.,
|F| ~ 3| F|2)t ~ J(N)f/5 and the following orders of
magnitude, namely d=1 A, o2)=0(y)=0(z)=0:/)3=
0-02 A the value of o(|F|)/|F| is approximately 45%.
Thus, even with a reasonably accurate structure,
the fractional error in |F| can have as large a
value as 509 or more for weak reflections.

3. Effect of errors on structure amplitude
|F| for P1

In this section we shall extend the results of the
previous section to the case of the centrosymmetric
space group Pl. Let the total number of atoms in
the unit cell be N(=2n), n being the number of atoms
in the asymmetric unit. The structure factor equation
takes the simple form

N
F =23 fiexp2niH.r; (16)
j=1
=23 fjcos 2nH.1;. (16a)
j=1

=4 (say).

The change 6|F| in |F| for arbitrary displacements
or; of r; is given by

§|F|=|0F|=|04| =|2 3 grad; 4.8r]
j=1

=4:7Zl%fj sin ;(H.8ry)| . (17)
=

On squaring this and following the procedure of the
previous section for averaging over the differentials,
we get

(S| F|)2)=(1672H?/3) (fa,)zz"‘ sinZ g; . (18)
j=1

As before, we make an approximation at this stage
and put

n

Xsin? pj = n (sin? @lav. ~ (n/2)

j=1
when equation (18) reduces to the simple form
(since H2=1/d?)
o%(|F|)= (8| F|)2) = (8n>n/3d?)(for)?
= (4n2N[3d?) (for)2.
The expression for the fractional error thus takes

the form
o(|F|)/|F| = (4n2N/3)t (for)/|Fld .

(19)

(20)

A comparison of equation (20) with equation (15)
shows that, other quantities being the same in both,
the fractional error for a centro-symmetrical crystal
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is greater than that of a non-centro symmetrical
crystal by a factor /2. This result is the reciprocal
of the more commonly known result in connection
with the refinement procedures, namely that the
standard deviation of the atomic co-ordinate for a
non-centrosymmetric crystal is greater than that for
a centro-symmetric crystal.

The results for the space groups, P2 and P2; are
also stated here without proof. For a general reflection
hkl the fractional error in |F| is given by

o(|F|)/|F|=(272N[3)} (for)/ | Fd

which is the same as for the non-centrosymmetric P1.
However, for reflections of the type 20! corresponding
to the centrosymmetric projection parallel to the
b axis, the fractional error is given by

o(|F))/|F|= (472N /3)} (for)/|F|d

(21)

(22)

which corresponds to P1I.

Equations (21) and (22) can be obtained by writing
down the explicit expressions for the structure factor
equation in terms of 4 and B and following the
methods of the section 2 and 3.

4. Effect of errors on Bijvoet inequality

In this section, the standard deviation and the
fractional error of the Bijvoet inequality are derived
in terms of the standard deviations of the atomic
co-ordinates. This problem of estimating the fractional
error in Bijvoet inequality was met with in connection
with the author’s work on the evaluation of the
anomalous dispersion factor Af}; from the measured
values of the Bijvoet inequalities (A1/I) for various
reflections for the compound L-tyrosine hydrochloride
(Parthasarathy, 1961). L-tyrosine hydrochloride con-
tains two chlorine atoms which are the anomalous
scatterers and a number of non-anomalous light atoms.
Choosing the origin midway between the two chlorine
atoms, it can be shown (Parthasarathy, 1961) that the
expression for the Bijvoet inequality takes the simple
form

(A1/1)=44B/|F]2, (23)

where Ag=2A4f( cos xg, B=|F|sin«. o is the phase
angles of the structure factor and «c;=2nH.rc.
|F|2 is the mean intensity of two inverse reflections,
which may for all practical purposes, be put equal
to the value calculated without including Af". It is
clear from equation (23) that the atomic co-ordinates
vitally enter into the calculation of (4I/I) and the
calculated value of the Bijvoet inequality depends on
the actual co-ordinates used. Now the problem is to
estimate the fractional error in Bijvoet inequality
o(4I/1){(41]/I) knowing the standard deviation of
the atomic co-ordinates.

The positions of the anomalous scatterers, which
are usually rather heavy, are known to a greater
accuracy than the rest and hence the factor 4/ in

the numerator of equation (23) for (AI/I) can be
regarded as a constant having no error. Equation (23)
then takes the form

(41/I)=EkBj|F2, (24)
where

k=44y.

By applying arguments similar to those employed
in Section 2 for deriving equation (15) from equation
(2), it can be shown that the fractional error in
Bijvoet inequality is given by

o(A1|)[(AI/1)= (272N [3) (fo,)/Bd . (25)

Equation (25) shows that, in general, a(A41/I)/(AI/I)
increases with increasing number of atoms N in the
unit cell, increasing angle of scattering 6 and decreas-
ing B. Equation (25) has been applied to the calcula-
tion of the fractional error in (AI/I) in the actual
case of L-tyrosine hydrochloride (Parthasarathy, 1961)
and it was found that even for this fairly accurate
structure (standard deviation of the light atoms is
less than 0-02 A) the fractional error o(A1/1)/(A1 /1)
was quite large, especially for weak reflections at high
values of (sin 6/2).

5. Effect of errors on the phase angle « for P1
The phase angle « is given by

a=tan"! (B/4). (26)

Since 4 and B are functions of r; the method of
Section 2 can be adopted here and a similar procedure
leads to the standard deviation o(«) of the phase
angle to be

o(x)=(2n2N/3)} (for)/|Fid . (27)

The following useful results can also be derived by
a similar method.

o(d)=0a(B)=o(|F|)=|F|o(«) . (28)

APPENDIX I

We shall give here another derivation of equation (14)
using a direct physical approach. The structure factor
equation

F=23fexpig;=21;, I-1)
where ! "

gi=2n(H.r;) (I-2)

is represented in an Argand diagram in Fig. 1(a).
The F and [ (bold face) indicates that they are vectors
in the Argand plane. A small error 8r;(dx;, dy;, 02))
in the atomic co-ordinates will produce corresponding
small changes Al; in the vectors 1; which are all shown
together at the terminus of the sum vector F. Thus
this vector changes from its original position OP to
a new one 0@, PQ being denoted by AF. It is obvious
that if the errors in the co-ordinates 8r; are random,
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then the point @ would be distributed all around the
mean position P with circular symmetry. The length
PQ on the other hand will have a mean square value
(IAF Y= 12 (say).

Clearly then

(AF1y = 3 3 (81:.81F) . (I'3)
7

Substituting for 81;, 81; from (I-1) and (I-2) we have

N N
(IAFR) =X X fify exp [i(gi— ;) (H.8r¢) (H.8r5)) -
t

(I-4)
Im
A
‘6IN \Q
ok 71
Gl
e P
% In
I2
10 e -7 -
e
~Z
/ —
(@ Re
Im
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«N
N ‘
A,
<« 2 N N\
/%
Ny F = — Re
\\
p?\\ ~ N
~ \T .
P
R |
)

Fig. 1. (a) Structure factor equation in the Argand plane for
the space group Pl. (b) Structure factor equation in the
Argand plane for the space group Pl.
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Using equation (115)

A2=(472N[3d2) (for)? . 1-5)

Now in general the vector AF makes a variable angle
@ with F so that, 6|F|, the component of AF parallel
to F is given by

OlF|=A4 cos p. (I-6)

On squaring this and averaging over all orientations
of AF (i.e., values of ¢ from 0 to 27) we obtain

(01F)2)= A% (cos? py=(42[2) . @-7)
Substituting from equation (I:5) we have finally
oX(|F|) = (272N [3d?) (for)?, (I-8)

which is the same as equation (14).

The above discussion can be readily extended to
the case of the centro-symmetrical space group PI.
Denoting the two asymmetric units in the unit cell
by subscripts 1 and 2, we can write the structure factor
as (see Fig. 1(d))

F=F.+Fs. (1-9)
Also
AF=AF;+ AF; . (I-10)

Even though |[4F:|=|AFz|=d (say), the phase angles
of AF and AF; are different. Hence equation (I-10)
can be written as

AF =0 [exp (ig) +exp (—ip)]=2d0 cos ¢, (I-11)
where 02 has a value, analogous to (I-5),
02 = (472n/3d?)(for)2 (I-12)

and @ is the angle made by AF;, with the real axis.
On squaring equation (I-11) and averaging over the
values of the variable angle ¢ i.e., from ¢=0 to 2z,
we get

(| F|) = (| AF?) =262 = (472N [3d%) (for)?, (I'13)

which is the same as equation (19).

The author is deeply indebted to Prof. G.N.
Ramachandran for his helpful guidance and the in-
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had with them. His thanks are also due to the Univer-
sity Grants Commission (India) for the award of a
research scholarship which made this work possible.
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