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The molecular orbital t reatment  given by Dunitz 
& 0rgel (1953) for the complex anion Ru~0Cli~ a would 
seem directly applicable to the RegOCI~ 4 ion since 
the two have the same molecular geometry. The result 
of this group-theoretical t reatment for Re90Cl~ 4 would 
be a sigma representation involving five chlorine and 
one oxygen bonds to metal  and a representation 
providing Eu (bonding and antibonding), B2g, Bg~, 
and Eg orbitals, these latter three types being ap- 
proximately degenerate. Ten electrons, three from 
each rhenium and the four p(x, y) from oxygen, can 
be placed in these orbitals, but the relatively high 
energy antibonding Eu orbital is not needed. The 
bonding E~ orbital is described by Dunitz & 0rgel 
(1953) as a degenerate bonding pi orbital. With four 
electrons in the E~ bonding orbital, six remain to be 
placed in the approximately degenerate group men- 
tioned above. If Hund's  Rule is followed, one expects 
to find two of these six electrons unpaired and to find 
a paramagnetism of one unpaired electron per rhenium. 
The experimental magnetic susceptibility (Jezowska- 
Trzebiatowska & Wajda, 1954) is extremely small 
and temperature independent and may, according to 
Jezowska-Trzebiatowska & Wajda,  even be due to 
contamination with related paramagnetic rhenium 
oxychloro complex compounds. This fact suggests 
that  Hund's  Rule is violated and that  all the electrons 
are paired. 
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the preparation of crystals suitable for diffraction 
study and to the National Science Foundation and the 
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The effect of errors of atomic parameters on the calculated values of the structure amplitude and 
the Bijvoet inequality is considered. Expressions for the standard deviations of the structure 
amplitude, Bijvoet inequality and the phase angle are derived and discussed. It is also shown that 
the fractional error in the structure amplitude can have as large a value as 50% or more for weak 
reflections at high values of sin 0 even for a reasonably accurate structure. 

1. I n t r o d u c t i o n  

While the problem of finding out how the errors in 
intensity IF] 2 or structure amplitude IF] affect the 
atomic positions has been discussed by a number of 
authors (see for instance Lipson & Cochran, 1957), 
not much attention seems to have been paid to the 

converse problem namely how any errors in the atomic 
co-ordinates affect the calculated values of JFl. This 
problem was met with in connection with the author's 
work on the evaluation of the anomalous dispersion 
factor / I f"  from experimental measurements of the 
Bijvoet inequali ty (zJI/I) for various reflections hkl 
(Parthasarathy, 1961). Consequently this general 
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problem was considered and the results obtained are 
presented below. The case of a non-centric symmetric 
crystal (symmetry P1) is first considered and the 
discussion is then extended to a centro-symmetric 
crystal (symmetry P1). Luzzati (1952) has also con- 
sidered the effect of errors of atomic co-ordinates on 
quantities as the structure amplitude IFI or the 
residual R, by employing a more elaborate method, 
using the probabihty methods and Wilson's intensity 
statistics. However, he has not given any explicit 
relation connecting the standard deviations in IFI and 
the atomic coordinates which would be convenient 
for numerical work. Using the present method which 
is basically very simple and direct, though somewhat 
less rigorous, a simple and explicit relation between 
the standard deviations of structure amplitude and 
atomic co-ordinates is derived. 

2. Effect of e r r o r s  on  s t r u c t u r e  a m p l i t u d e  
IF[ for  P1  

Let us first take the case of a crystal containing 
N atoms per unit cell. Since we need consider but one 
unit cell and not the entire lattice, we may as well 
employ an orthogonal set of axes without loss of 
generality.* Suppose that the position of the jth atom 
(j= 1 to N) in the unit cell is given by r~ (x;, y;, z~) 
where x~, y1 and z1 have standard deviations a(x¢), 
a(y~) and a(zi) respectively. We shall suppose that 
the errors in the co-ordinates are isotropic i.e., the 
position of the jth atom is distributed spherically 
around its mean position with a root mean square 
radius a(Ir;l) (= ar~" say in A) with the centre of the 
sphere at the tip of the vector r;. at; is then related to 
the standard deviations a(x~), a(y;) and a(z;) by the 
relations: 

a(x;) = a(y;)= a(z~)= at;~ V3. (1) 

The problem is then to find out the standard deviation 
of ]F 1 in terms of ar~for a particular reflection. We have 

F = ~ , f ~  exp 2 ~ i H . r ;  

= ~ f ¢  exp 27d(hx;/a+ky;/b+lz;/c) , (2) 

where H is the reciprocal lattice vector. (For con- 
venience indices hkl are omitted and the structure 
factor of a general reflection F~zt will be simply 
denoted by F). For arbi t rary displacements 5r~ of r~ 
the change ~[F[ of IF I is given by 

3" 
5IF[ = 2." grad~lF[. ~ r ; ,  (3)~ 

]=1 

where N is the number of independent r; i.e., in this 

* Thanks  are due to the referee for some remarks  concerning 
this point.  

I n  wri t ing equa t ion  (3), we take only  the first term of the  
Taylor  expansion and  this is equivalent  to the  assumpt ion  
t h a t  the  funct ion  D given by  equat ion (9) of Luzzat i  takes the 
value uni ty .  

case, the number of atoms in the unit  cell. In  order 
to evaluate grad;IF[,  we note tha t  grad;IFle = 
2]FI grad;IF[ and since ]F[~=A2+B~ we have 

gradj [F[ = (1/[FI) (A grad; A + B  grads B) 

and equation (3) becomes 
3 

5IFI = (1/!FI) 2." I(A grad; A + B  grad; B). 5r ; .  
]=1 

Since 
A = ~Y,'f; cos ~,; and B = 2~f~ sin ~v;, 

where " 
cf ~ = 2~ (hx/a + ky;/b + lz;/c) (6) 

we obtain 
grad; A = - 2 ~ f i  sin ~ H.  ~r; (7) 

and 

(4) 

(5) 

grad; B = 2~f; cos q~; H.  ~ r j .  (8) 

Substitution of equations (7) and (8) in equation (4) 
leads to the expression for (Y, FI as 

3" 
~IFI =(2ze/[Ft).,~,fi(B cos ~ ; - A  sin q)j)H.Sr3-. (9) 

j= l  

On squaring this and averaging over the differentials, 
we have 

A" ~V 
((~IFI)~> = ( 4 ~ / i F i  ~) 2 : . Z f i f ; ( B  cos ~ i - A  sin ~i) 

i i 

x (B cos ~v; - A sin ~;) 

x <(H. 8ri) (H. g r ; ) ) .  (10) 

Here [Ft2 , H and (B cos~v~-A sin ~v;) are constants 
for a particular reflection and the averaging need be 
done only over the displacements 8r~ of the various 
atoms. The averanging may be performed in two steps, 
first over all orientations of ~ir¢ and next over all 
magnitudes of these. Now 

H . ~ r i =  IHI Ibr~[ cos e, 

H.  ~ir; = IHI [~r¢l cos ~j,  

where si, s; are the angles made by 8ri and 8r; with 
the reciprocal lattice vector H. Hence 

< (n .S r , ) (H .S r ; )>  = H2[l&d Idr~I] {cos ei cos ~j}. ( l la)  

Here the bar indicates the average over all the values 
of ~lrjI and the curly bracket indicates the average 
over the surface of a unit sphere (i.e., over the angle 
variables). Since the displacements 5r,  and 5rj are 
independent, the product cos s~ cos s; would have a 
mean value zero where i # j  and a mean value ½ 
when i = j .  We have then 

< ( H . S r d ( H . S r ; )  > = - { 0 for i # j  (lib) 
½H2o'°j for i = j  

where we have denoted I~rjl 2 by (r~j. 
Using equation (llb) in equation (10), we have 

N 
<(dlFI)e> = (4:reHe/3IFI2) ~v (B cos ~0j- A sin ~¢)2f~ ar~j. 

j=t (12) 
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As in general  the s tandard  deviat ion of the  position 
of the a tom is inversely proport ional  to the 'heaviness '  
of the atom, 2 2 f~. a~j can be taken  to be reasonably a 

(f~Or]>~v. say, and hence constant  for all  j ' s  equal  to 2 
this  factor can be taken  out of the summation.  We 
shall  indicate its square root for convenience by  (far) 
so tha t  2 e ( f  ](~rj>a,,.=(far) 2. Thus 

N 
(( ~IF])e>=(47~eHe/UlFI ~) (f(r~) e Z (B cos ~0~- A sin ~j)2. 

~=1 (13) 

Equat ion  (13) represents the mean  square deviat ion 
corresponding to a given dr. However, i t  contains the 
expression (B cos ~0~-A sin ~ )  which has to be cal- 
culated for each reflection, knowing A, B and  ~0~. 
In  this  investigation,  we are interested more in the 
order of magni tude  of errors ra ther  t han  its actual  
value. Consequently,  we make  an approximat ion  and  
use the average value of the above summat ion  in the  
expression for the var iance of [F]. If  we take tha t  the 
N atom in the uni t  cell are dis t r ibuted at random, 
then  it follows tha t  

(B cos ~ - A sin ~0~) ~ ~ N ( B  cos ~ - A sin 9~)~., 
] 

which is equal  to 
(N/2) (Az + B e) , 

since 

<cos ~ ~v~)~v. = (sin e ~v~-)~. = ½ and  (cos q~ sin ~v~)a~. = 0 .  

Thus, the average value of the sum is just  (N/2)IFI e. 
Denoting the mean  value of ((0IF[) e) by  ~2([FI), the 
expression for this  assumes the simple form (since 
H e = l id  e) 

~2(IFI) = (27e~N/3d e) (far)e. (14) 

I t  follows from this tha t  the fract ional  error in IF] is 

(r(IF[)/IFl=(2~eN/3)½(far)/( lFId) . (15) 

(An al ternat ive  der ivat ion of equat ion (14) which 
is not  so rigorous, bu t  which uses direct physical  
a rguments  is given in Appendix  I.) 

Equa t ion  (15) shows tha t  in general, the  fract ional  
error (r([FI)/IFI increases with increasing Bragg angle 
i.e., for planes having larger and  larger indices hkl 
and hence the value of IF[ is very  sensitive to atomic 
parameters  at  high angles. This indicates the impor- 
tance of high angle reflections for ref inement.  I t  can 
be also seen that ,  for reflections of medium intensi ty,  
i.e., wi th  

iF[2 ~ <lrfZ> ..~ ~yf2 ~ N ( f ~ }  

the  fract ional  error is independent  of the actual  
number  N;  for pu t t ing  [FI ~ ~ N f  2. Equat ion  (15) 
becomes 

(r(IF[)/IFI ~ (2:~/3) ½ (N/d)( ( f~a~})½/(N( f2})  ½ 
(2~e/3) ½ (~r/d 

where ar can be considered to be the mean  of the 

s tandard  deviat ions of the various atoms. On the 
other hand  a([FI)/IFI assumes very  large values for 
weak reflections especially at  high angles. Taking a 
typical  case of a weak reflection with its s tructure 
ampl i tude  having one f i f th the mean  value i.e., 
[El ~ ~(IFIe) ½ ~ V( N) f / 5  and the following orders of 
magni tude,  namely  d = 1 J~, a(x) = a(y) = a(z)= ~/ ] /3  = 
0.02 A the value of a(IF[)/IF[ is approx imate ly  45%. 
Thus, even with a reasonably  accurate structure,  
the fract ional  error in  IFI can have as large a 
value as 50% or more for weak reflections. 

3. Effect of e rrors  on s t ruc ture  a m p l i t u d e  
]F 1 for P i  

In  this section we shall  extend the results of the 
previous section to the case of the centrosymmetr ic  
space group P1. Let  the total  number  of a toms in 
the uni t  cell be N( = 2n), n being the number  of a toms 
in the asymmetr ic  unit .  The structure factor equat ion 
takes the simple form 

:V 

2' = ~ f j  exp 2j r iH.  r j  (16) 
j = l  

= 2 27fj  cos 2~rH. r j .  (16a) 
1=1 

= A (say) . 

The change bJF] in IF1 for a rb i t ra ry  displacements  
8r j  of r j  is given by  

5[El = [5F[ = IdA[ = 12 27 grads A.  5rj[ 
/'=1 

= 4 n [  22fi  sin ~ ( H .  ~rD]. (17) 
j = l  

On squaring this  and  following the procedure of the 
previous section for averaging over the differentials,  
we get 

((OlFl)e)=(16:neHe/U)(fcrr)2~'sineq)j .  (18) 
]=1 

As before, we make an approximat ion  at this stage 
and  put  

sin e ~ = n (sin e ~)nv. ~ (n/2) 
~'=1 

when equat ion (18) reduces to the simple form 
(since H e = l id  e) 

~e(lFI) = ((01FI) 2 ) = (8~2n/3d 2) (f~r) 2 
= (47eeN/3de)(f~r) e. (19) 

The expression for the fract ional  error thus takes 
the form 

a(IF[)/[FI = (4~reN/3) ½ ( far)/[F[d.  (20) 

A comparison of equat ion (20) wi th  equat ion (15) 
shows that ,  other quanti t ies  being the same in both,  
the fract ional  error for a centro-symmetr ical  crystal  
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is greater than that  of a non-centro symmetrical 
crystal by a factor 1/2. This result is the reciprocal 
of the more commonly known result in connection 
with the refinement procedures, namely that  the 
standard deviation of the atomic co-ordinate for a 
non-centrosymmetric crystal is greater than that  for 
a centro-symmetric crystal. 

The results for the space groups, P2 and P2~ are 
also stated here without proof. For a general reflection 
hkl the fractional error in IFI is given by 

(~(IFI)/IFl=(2~uN/3)½(f(rr)/I.Fld, (21) 

which is the same as for the non-centrosymmetric P1. 
However, for reflections of the type hO1 corresponding 
to the centrosymmetric projection parallel to the 
b axis, the fractional error is given by 

(r(IF[)/]FI = (47e2N/3) ½ (f(r~)/lFld, (22) 

which corresponds to P1. 
Equations (21) and (22) can be obtained by writing 

down the explicit expressions for the structure factor 
equation in terms of A and B and following the 
methods of the section 2 and 3. 

4. Effect of errors  on Bijvoet  inequa l i ty  

In  this section, the standard deviation and the 
fractional error of the Bijvoet inequality are derived 
in terms of the standard deviations of the atomic 
co-ordinates. This problem of estimating the fractional 
error in :Bijvoet inequality was met with in connection 
with the author 's work on the evaluation of the 
anomalous dispersion factor /Ifc' I from the measured 
values of the Bijvoet inequalities (1111/1) for various 
reflections for the compound L-tyrosine hydrochloride 
(Parthasarathy,  1961). L-tyrosine hydrochioride con- 
tains two chlorine atoms which are the anomalous 
scatterers and a number of non-anomalous light atoms. 
Choosing the origin midway between the two chlorine 
atoms, it can be shown (Parthasarathy,  1961) tha t  the 
expression for the Bijvoet inequality takes the simple 
form 

( A I / I )  = 4A'ciB/ IFI 2, (23) 

where " " " Ac i=2Afc l  cos acl, B =  ]F I sin c~. c~ is the phase 
angles of the structure factor and ac1=2~H. rc l .  
[Fie is the mean intensity of two inverse reflections, 
which may for all practical purposes, be put equal 
to the value calculated without including / I f " .  I t  is 
clear from equation (23) tha t  the atomic co-ordinates 
vitally enter into the calculation of (AI / I )  and the 
calculated value of the Bijvoet inequality depends on 
the actual co-ordinates used. Now the problem is to 
estimate the fractional error in Bijvoet inequality 
a ( A I / I ) / ( A I / I )  knowing the standard deviation of 
the atomic co-ordinates. 

The positions of the anomalous scatterers, which 
are usually rather heavy, are known to a greater 
accuracy than the rest and hence the factor Ac] in 

the numerator of equation (23) for ( / i I / I )  can be 
regarded as a constant having no error. Equation (23) 
then takes the form 

( A I / I )  = kB/]FI2 , (24) 
where 

~=4A;',. 

By applying arguments similar to those employed 
in Section 2 for deriving equation (15) from equation 
(2), it can be shown tha t  the fractional error in 
Bijvoet inequality is given by 

a(AI / I ) / (AI / I )=(2~2N/a)½( far ) /Bd .  (25) 

Equation (25) shows that ,  in general, a ( A I / I ) / ( A I / I )  
increases with increasing number of atoms N in the 
unit cell, increasing angle of scattering 0 and decreas- 
hag B. Equation (25) has been applied to the calcula- 
tion of the fractional error in (AI / I )  in the actual 
case of L-tyrosine hydrochloride (Parthasarathy,  1961) 
and it was found tha t  even for this fairly accurate 
structure (standard deviation of the light atoms is 
less than 0.02 _~) the fractional error (~(AI/I ) / (AI/ I )  
was quite large, especially for weak reflections at high 
values of (sin 0/2). 

5. Effect of errors  on the phase  ang le  a for P1 

The phase angle c~ is given by 

= tan -1 (B/A) . (26) 

Since A and B are functions of r~ the method of 
Section 2 can be adopted here and a similar procedure 
leads to the standard deviation a(a') of the phase 
angle to be 

a(~x)=(2n2N/3)½ (far)/lFjd . (27) 

The following useful results can also be derived by 
a similar method. 

cr(A)=~r(B)=cr(lFl)=lFIcr(~x) . (28) 

A P P E N D I X  I 

We shall give here another derivation of equation (14) 
using a direct physical approach. The structure factor 
equation 

F =_Yfi exp i~j =2"15,  (I-l) 
where ) J 

Fj = 2zt (H. re) (I.2) 

is represented in an Argand diagram in Fig. l(a). 
The F and l (bold face) indicates tha t  they are vectors 
in the Argand plane. A small error ~rj(Sx~, 5y¢, 6z¢) 
in the atomic co-ordinates ~ill produce corresponding 
small changes Alj in the vectors 1~ which are all sho~al 
together at the terminus of the sum vector F. Thus 
this vector changes from its original position OP to 
a new one OQ, PQ being denoted by A F. I t  is obvious 
that  if the errors in the co-ordinates 8r~ are random, 
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then the point Q would be distributed all around the 
mean position P with circular symmetry.  The length 
PQ on the other hand will have a mean square value 
( I / i F I 2 )  = ~ (say).  

Clearly then 

(IzJFl~) =.Z_~ (~i~.Sl*>. (I.3) 
i j 

Substituting for ~il~, ~I# from (I.l) and (I.2) we have 

2V N 
( i / iF le )  = ~ v . v f ~ f i  exp [ i ( ~ -  ~ j ) ( (H.  8r~)(H. ~r ] ) ) .  

7 (I.4) 

Im 

~IN Q 

. z /  P 

Im 

(a) R e  

I S  
F *-A 

(b) 

Re 

Fig. 1. (a) Structure factor equation in the Argand plane for 
the space group P1. (b) Structure factor equation in the 
Argand plane for the space group P1. 

Using equation (1 lb) 

A 2 = (4~2N/3d2) (far)2 . (I'5) 

Now in general the vector LJF makes a variable angle 
9 with F so that ,  51FI, the component of / iF  parallel 
to F is given by 

51F[ = / I  cos ~ .  (I.6) 

On squaring this and averaging over all orientations 
of / i F  (i.e., values of ~ from 0 to 2~) we obtain 

((~[F[)e}----/i e (cos e ~}=( / t~ /2 ) .  (I.7) 

Substi tuting from equation (I:5) we have finally 

ae([F[) = (2~eN/3d e) (far) e, (I'8) 

which is the same as equation (14). 
The above discussion can be readily extended to 

the case of the centro-symmetrical space group P1. 
Denoting the two asymmetric units in the unit  cell 
by  subscripts 1 and 2, we can write the structure factor 
as (see Fig. l(b)) 

F = F1 + F2 . ( I . 9 )  
Also 

/ i F = / i F 1 + / i F 2 .  (I.10) 

Even though }z]Fil = I/iF2} = ~ (say), the phase angles 
of / iF  and /iFe are different. Hence equation (I.10) 
can be writ ten as 

/ i F - - 6  [exp (iq~)+exp ( - i ~ ) ] = 2 6  cos ~ ,  (I.11) 

where ~2 has a value, analogous to (I-5), 

(52 = (4~2n/ad 2) (far)9 (I" 12) 

and ~0 is the angle made by  ~iF1, with the real axis. 
On squaring equation (I.11) and averaging over the 
values of the variable angle ~ i.e., from ~ - - 0  to 2z,  
we get 

ag.(IF[) = (]AF[ 2) = 2 ~  = ( 4 ~ N / 3 d  2) (far) 2, (I" 13) 

which is the same as equation (19). 
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